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Abstract. Cryogenic X-ray spectrometers operating at temperatures below 1 K combine high energy resolution with broadband
efficiency for X-ray energies up to 10 keV.  They offer advantages for chemical state analysis of dilute samples by fluorescence-
detected X-ray absorption spectroscopy  (XAS) in cases where conventional Ge or Si(Li) detectors lack energy resolution and
grating spectrometers lack detection efficiency.  We are developing soft X-ray spectrometers based on superconducting Nb-Al-
AlOx-Al-Nb tunnel junction (STJ) technology. X-rays absorbed in one of the superconducting electrodes generate excess charge
carriers in proportion to their energy, thereby producing a measurable temporary increase in tunneling current.  For STJ operation
at the synchrotron, we have designed a two-stage adiabatic demagnetization refrigerator (ADR) with a cold finger that holds a 3 ×
3 array of STJs inside the UHV sample chamber at a temperature of ~0.1 K within ~15 mm of a room temperature sample.  Our
STJ spectrometer can have an energy resolution below 10 eV FWHM for X-ray energies up to 1 keV, and has total count rate
capabilities above 100,000 counts/s.  We will describe detector performance in synchrotron-based X-ray fluorescence
experiments and demonstrate its use for XAS on a dilute metal site in a metalloprotein.

INTRODUCTION

Cryogenic x-ray detectors with an operating temperature below 1 K are being developed for applications from
material science [1,2,3] and biophysics [4] to particle and astrophysics [5,6] because of their high energy resolution
and broadband efficiency. Superconducting tunnel junctions (STJs) are the class of cryogenic detectors preferred for
synchrotron applications, since they can be operated at count rates well above those of other low temperature
detector technologies [7]. STJs consist of two superconducting electrodes separated by a thin insulating tunnel
barrier. They exploit the small energy gap ∆ by which excited quasiparticle stats are separated from the
superconducting electronic ground state constituted by Cooper pairs .  A photon with energy E is absorbed in one of
the electrodes, breaks Cooper pairs and thereby generates excess quasiparticles in proportion to its energy. These
quasiparticles can tunnel through the insulating barrier, thereby producing an excess current proportional to the
energy of the incoming photon. The total charge Q thus provides a measure of the photon energy according to

Q

e
= n

E
± n

E
F +1+1/ n( ) (1)

Here e is the electronic charge, ε ≈ 1.7 ∆ is the average energy required to generate a single excess quasiparticle,
<n> is the average number of tunneling events each quasiparticle undergoes, and F ≈ 0.2 is the Fano factor that
describes the statistical fluctuations in the initial charge generation process.

Since the energy gap ∆ is of order 1 meV in superconductors, about a factor 1000 smaller than the gap in semi-

conductors, the energy resolution in STJs can theoretically be a factor 1000 ≈ 30  higher than in Si(Li) or Ge
detectors, i.e. well below 10 eV FWHM for photon energies up to 10 keV. The maximum count rate in STJs is set
by the average quasiparticle life time, since charges cannot be swept out of a superconductor with a voltage.  For
typical life times of several µs, count rates above 10,000 counts/s per pixel can be achieved.



SPECTROMETER DESIGN AND PERFOMRANCE

Our STJ detectors are based on vertically stacked Nb-Al-AlOx-Al-Nb thin film technology.  They consist of a
165 nm top Nb absorber film, an Al-AlOx-Al tunnel junction whose 50 nm Al electrodes serve as quasiparticle
traps, and a 265 nm bottom Nb electrode.  Quasiparticles generated in the top Nb absorber diffuse into Al film
where the energy gap is lower, scatter inelastically and are then trapped in the region near the tunnel barrier.  Each
quasiparticle can tunnel multiple times, each time transferring charge in direction of the ~300 µV bias across the
barrier.  This provides intrinsic charge amplification by an average factor <n>, but also adds statistical noise
1+1/<n> due to variations in the average number of tunneling events, and thus affects the ultimately attainable
energy resolution.  Device sizes vary between 50 µm × 50 µm and 200 µm × 200 µm per pixel, with smaller devices
typically achieving higher energy resolution because of lower device capacitance, lower leakage currents and fewer
Fiske mode resonances [8,9].  For fluorescence-detected absorption spectroscopy of dilute samples at the
synchrotron, we trade off some energy resolution for larger solid angle coverage and operate a 3 × 3 array of 200 µm
× 200 µm STJs.

To operate our STJ array at a beam line endstation, we have built a two-stage adiabatic demagnetization
refrigerator (ADR) with a 40-cm-long cold finger that holds the STJ array within 15 mm of the room temeprature
sample inside the UVH chamber (figure 1) [10]. After precooling with liquid nitrogen and liquid helium to 4.2 K,
the base temperature below 100 mK is attained by isothermal magnetization and adiabatic demagnetization of two
paramagnets [11]. Magnetization lowers the entropy of the paramagnet, and the heat of magnetization is carried into
the liquid He bath through a closed heat switch. After opening the heat switch, the magnetic field is decreased
sufficiently slowly to keep the entropy of the paramagnet constant, thereby lowering its temperature.  The two-stage
design uses a gadolinium gallium garnet Gd3Ga5O12 (GGG) to cool to 1 K, and Fe(NH4)(SO4)2 × 12 H20, commonly
know as FAA for ferric ammonium alum, to cool to a base temeprtaure of ~80 mK without having to pump on the
liquid helium bath.  Our ADRs are compact, reliable and easy to use, and the hold time per magnetization cycle is
about 20 hours below 400 mK, the maximum operating temperature of our STJs.

The STJ detector is mounted at the end of an Au-plated OFHC Cu rod that is bolted to the 0.1 K stage at three
points for stability and thermal contact. This rod is surrounded by a helium-cooled OFHC Cu radiation shield, which
also holds the STJ detector magnet needed to suppress the dc Josephson current for stable STJ operation.  All of this
is enclosed with a second radiation shield attached to the liquid-N2-cooled stage.  At the end of the cold finger there
are three 200 Å Al on 1000 Å parylene infrared (IR) blocking windows to prevent room temperature radiation from
heating the cold stage and causing IR induced excess noise in the detector.  Their size is determined by a trade-off
between desired angle of acceptance and tolerable IR photon flux.

GGG

N2 tank (77 K)

He tank (4.2 K)
5T ADR magnet

Magnetic shield

1K stage
0.1K stage

FAA

Kevlar strings

STJ magnet

IR windows
Electronics

Heat switch

40 cm

STJ

12 mm

3 x 3 STJ detector array:

0.6 mm

FIGURE 1.  Superconducting spectrometer design.  The detector is held at ~0.1 K at the end of the cold finger behind three thin
IR-blocking windows.  The preamplifier signal can be processed with standard pulse processing electronics.



0

2

4

6

8

10

12

0 200 400 600 800 1000

R
es

ol
ut

io
n 

[e
V

 F
W

H
M

]

Energy [eV]
        

0

10

20

30

40

50

100 1000 104 105

R
es

ol
ut

io
n 

[e
V

 F
W

H
M

]
Output count rate [counts/s]

FIGURE 2.  Left: Energy resolution as a function of energy of a 100 µm × 100 µm STJ detector. The intrinsic device resolution
(open circles) is obtained by subtracting the electronic noise (dashed line) from the measured resolution (solid circles) and
compared to the theoretical limit according to equation (1) for <n> = 3.1 (solid line).  Right: Energy resolution at 277 eV for a
single STJ pixel as a function of throughput for 4 µs (circles), 1 µs (squares) and 0.25 µs (diamonds) shaping time.

We have illuminated a 100 µm × 100 µm STJ detector directly with monochromatic undulator radiation to test its
resolution as a function of energy and count rate (figure 2).  The energy resolution varies between 6.8 and 9.5 eV
FWHM in the energy band between 50 and 1000 eV, dominated by ~6 eV electronic noise.  This is somewhat less
than the resolution between 1.7 and 8.9 eV of nominally identical STJ detectors mounted in the center of an ADR
[8,12], rather than at the end of a cold finger.  This discrepancy is likely due to excess noise caused by IR radiation.
When subtracting the electronic noise in quadrature from the measured device resolution, we find an intrinsic
detector resolution that is within ~50% of the statistical limit given by equation (1) for <n> = 3.1.

We have examined the high count rate performance of this detector by varying the exit slit size at a constant
excitation energy of 277 eV (figure 2).  The energy resolution is ~8 eV FWHM up to a count rate of ~10,000
counts/s for a single pixel at a shaping time of 4 µs.  At 22,000 counts/s, the resolution is reduced to 10.2 eV by pile-
up.  Operation at higher rates is possible, albeit with a shorter shaping time and consequently lower resolution of
19.3 eV at 43,000 counts/s (1 µs shaping) and 42.9 eV at 105,000 counts/s (0.25 µs shaping).

FLUORESCENCE-DETECTED ABSORPTION SPECTROSCOPY

Synchrotron-based x-ray absorption spectroscopy (XAS) samples atomic energy levels with sub-eV resolution by
scanning the energy of a monochromatic beam through an absorption edge of the element of interest.  For dilute
samples, the sensitivity is highest when recording the intensity of the corresponding x-ray fluorescence as a measure
of absorption (fluorescence-detected XAS) [13]. This greatly reduces the number of background counts, provided
that the fluorescence line of interest can be separated from neighboring lines in multi-element specimens.  Cryogenic
x-ray detectors offer an advantage in the soft X-ray energy range below 1 keV whenever conventional Si(Li) or Ge
detectors lack energy resolution, and grating spectrometers lack the efficiency to collect X-rays from dilute samples
within an acceptable period of time. A short measurement time is crucial for biological samples that suffer from
radiation damage.

We demonstrate the sensitivity of the spectrometer with an Mn L-edge absorption spectrum from a dried (and
biologically inactive) film of the photosystem II protein, taken at beam line 4.0.2 at the Advanced Light Source [14].
The Mn-cluster in the oxygen-evolving complex of photosystem II is responsible for oxygen evolution in plants, and
Mn L-edge spectroscopy can contribute to understanding the enzymatic mechanisms of that process.  At constant
excitation energy, the response of the nine channels in the array is quite homogeneous, and the weak Mn L
fluorescence at ~640 eV from the ~100 ppm of Mn is well separated form the dominant O K line at 525 eV,
although the resolution is reduced to ~15-20 eV for the larger 200 µm × 200 µm pixels (figure 3, left).
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FIGURE 3.  Left: Fluorescence spectrum from a dried and biologically inactive photosystem II protein showing the response for
the nine different pixels in the array.  Right: Fluorescence-detected Mn L-edge absorption spectrum of this sample (solid lines),
and multiplet calculations of the expected change of the spectrum for Mn in the oxidation state +3 and +4 (dashed lines).

The absorption spectrum is an average of two 50 minutes scans, normalized by the incident beam, with the
background subtracted. The spectrum has a Sp-p/Nrms ratio of ~50, which is sufficient to determine oxidation states
(figure 3, right).  The sharp peak at ~640 eV is indicative on Mn2+, not surprising given that the sample is no longer
active and Mn2+ is the most stable oxidation state.  For comparison, we show the chemical shifts of the absorption
spectra expected if all Mn atoms were in the oxidation state +3 or +4.  While no biological information should be
extracted from these spectra, they illustrate the capabilities of cryogenic STJ detectors for synchrotron-based
fluorescence-detected soft X-ray absorption spectroscopy to determine chemical states of dilute samples.
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